
J .  FZuid Mech. (1967), vol. 28, part 1, p p .  1-16 

Printed in Great Britain 

1 

A theoretical and experimental investigation of the 
phase configuration of internal waves of small amplitude 

in a density stratified liquid 

By D. E. MOWBRAY AND B. S. H. RARITY? 
Department of the Mechanics of Fluids, University of Manchester 

(Received 3 May 1966) 

Experiments were conducted to test the linear theory of internal gravity waves 
produced in a stably stratified liquid by the forced oscillations and the initial 
impulsive motion of a two-dimensional stationary disturbance. The measure- 
ments of the wave configuration in a medium whose density increased linearly 
with depth were made by means of a Toepler-schlieren system. The agreement 
between observation and prediction was found to be good. 

1. Introduction 
The generation of internal gravity waves by a small disturbance in a fluid of 

non-uniform density or entropy was first discussed by Love and his results were 
repeated by Lamb (1932); see $ 2  below. Yih (1965) discussed small amplitude 
internal waves in some detail, but was concerned primarily with the theoretical 
problems associated with waves in bounded media. To the authors’ knowledge, 
the simple properties of the phase configuration of internal waves had not been 
investigated experimentally by techniques which permitted a precise comparison 
of theory and experiment to be made nor had many of the implications of the 
theory been verified. Gortler (1943) discussed the properties of the steady-state 
wave system in terms of the characteristics of the linearized equations of motion 
and performed experiments using a shadowgraph technique. This work came to 
the authors’ notice some months after the present investigation was completed. 
The present paper differs for Giirtler’s in that the analysis is couched in terms of 
group velocity arguments, which is perhaps more in the spirit of a linearized 
theory. The paper goes beyond that of Gortler in discussing propagation in zt 

medium inhomogeneous with respect to the waves, in deriving the law of reflex- 
ion, in examining the trapping of waves and in analysing the transient problem. 
The steady-state wave configuration in a medium homogeneous with respect to 
the waves was studied and essentially the same experimental results obtained 
using a similar technique by Gortler. 

The paper gives an account of an investigation into two simple situations, in 
which small amplitude waves are produced by a small disturbance which is 
localized near the origin of space co-ordinates, and which either oscillates with a 
definite frequency w or is moved impulsively to simulate a point disturbance in 
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time. The general relation between frequency and wave-number is rederived 
from which the group velocity is deduced using stationary phase arguments. It 
is shown that, for wavelengths small compared with the distance over which the 
density changes appreciably, the group and phase velocities are at right angles to  
one another, and that, in the steady state, there is a single direction depending 
on frequency in which the waves may propagate. The Cauchy-Poisson problem 
is solved to give the form of the wave-crests and disturbance front for an impul- 
sive disturbance; we find that there are two families of waves, of similar appear- 
ance to the Kelvin ship-waves, although the disturbance is stationary in the 
present problem. 

Experiments were performed in which such waves were generated by a circular 
cylinder oscillating horizontally with small amplitude or a flat strip with its face 
vertical moved abruptly through a small distance in a horizontal direction in a 
tank carefully filled with a salt-water solution whose salinity varied with depth 
and for which the frequency ( - gp-ldp/dy)fr was nearly constant; the significance 
of this parameter will become clear later. It has recently been realized that it is 
possible to observe and to take precise measurements of the phase configuration 
of internal waves by means of a schlieren system similar to that used to observe 
flow fields in which the density is non-uniform by reason of compressibility; see 
Mowbray (1966). In  the present situation, the effects of compressibility are com- 
pletely unimportant; the density is non-uniform initially and subsequent 
disturbances produce deviations from the original non-uniformity . It is these 
which are measured. The agreement between the experimental measurements and 
the predictions of the wave-crest pattern by the theory was good; no attempt has 
been made to discuss the amplitude variation. The main features of the theory 
were observed and no phenomenon was observed which was not readily explicable 
in terms of the theory. 

We begin by giving a brief outline of the theory, noting several implications 
which can be tested, We then outline the experimental arrangements and tech- 
niques and discuss the results, concluding with the comparisons between observa- 
tion and prediction. The agreement was found to be better than 5 yo. 

2. The frequency wave-number relation and its implications 
If p is the density, q the velocity vector, p the pressure and g the acceleration 

due to gravity, then in a co-ordinate system with the x-axis horizontal and the 
y-axis vertical with y increasing upwards, the equations of motion are 

(aP/at) + v. (pq) = 0, 

P ( W t )  + P q .  Vq = - VP + P& 

(a@) + q.  v p  = 0. 

(1)  

(2) 

(3) 

v.q = 0. (4) 

together with the condition that the density is constant along a particle path 

Equations (1) and (3) imply that 

If we denote equilibrium values of quantities in the medium at rest by a suffix 
zero and disturbances from equilibrium by a suffix one, so that p = po +pl ,  and if 
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q = (u, v ) ,  then the equations governing the propagation of small disturbances 
are 

Po(au/at) = - ap1/ax7 

PO(av,'at) = - (apl /ay)  -Plg7 

(8PlPt) + V(dPO/dY) = 0, 
(aupx) + (av/ay) = 0,  

aPo/aY = - P o s e  

= a$/ay, v = -a$px. 

and 

where we have used the equilibrium condition 

We define $ by the relations 

Then, substituting for u and v ,  eliminating the pressure gradient terms, we have 

Eliminating derivatives of p l ,  we get 

where a dot denotes differentiation with respect to t and wt  = -gpoldpo/dy is 
the square of the local Vaisala-Brunt frequency. This equation was derived by 
Love and repeated by Lamb (1932). 

If we look for a solution of the form 

1c. = $o:Y)exP(i(klx+kzY-w~)}7 
then w2 = w2k2 o I ( ~ ?  + k;- 2ik2 $i/$o- $ ~ ~ $ o  -k ikzw% + wg $6/!3$0)-'7 

where a dash denotes differentiation with respect to y .  The medium is defined to 
be homogeneous with respect to internal gravity waves if wo is constant throughout 
it. In  such a medium, conservation of energy requires that $o must be propor- 
tional to exp (wty/2g). Thus 

w2 = GJk2,(k2, + k; + (wi/29)2)--1, ( 5 )  

and $cc exp ( w ~ y / 2 g ) e x p ( i ( k 1 x + k 2 y - w t ) } .  

If (w;/2g)2 < k2, + ki = 47r2/h2, m here h is the wavelength of the waves, then 

w = wo sin O{ 1 - & n - 2 A z ( ~ ~ / 2 g ) 2  + . . .}, 
where sin 6 = kl(k: + ki)-*, so that 6 is the angle between the wave-number 
vector k and the vertical. Note that the relation w = wo sin 6 does not depend on 
the magnitude of k but only on its direction, so that for a given frequency w and 
a given value of wo, waves of all wavelengths may be excited. 

It is well known that in linear one-dimensional wave systems the energy 
travels with the group velocity cg = dw/dk .  For two-dimensional disturbances, it 
can similarly be shown that energy travels with the group velocity 

C ,  = (aw/ak,, awlak,). 
1-5 
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If we consider a wave train which has been produced by a disturbance of definite 
frequency which has been operating for all time, the waves may be represented 
by a Fourier integral of the form 

@ = ~f(k)exp{i(k,x+k,y-ot)&k, (6) 

and sufficiently far from the disturbing mechanism, at large x ,  say, we may 
deduce the asymptotic value of the integral (6) by the principle of stationary 
phase. This states that the most important contribution to the integral 

JfW exp &(k, w ,  Y ,  t )  x }  dk 

arises from points at  which aglak, = ag/alc2 = 0, provided these stationary points 
are distinct; the contribution to the integral is O(x-l). Here, g = k, + k, y lx  - wt/x,  
so that the conditions for points of stationary phase are 

and 

which we may write as 

These results can also be deduced from consideration of the kinematics of wave 
crests; see, for example, Whitham (1960). Alternatively, we may write the equa- 
tions in the form X/t = aw/ak, and Ylt = aw/ak2 

with x / y  = O( 1). This may be interpreted as stating that the main contribution to 
the integral propagates with the velocity (awlak,, aolak,). If the points of 
stationary phase are not distinct, so that 

( 7 )  

in addition to (7),  then the main contribution is O(x-e); see, for example, Jones 
& Kline (1958). This is the argument which establishes the envelope of the 
Kelvin ship-wave pattern, for example. 

We may consider the waves produced by an initial disturbance localized in 
space and time. The waves may again be represented by a Fourier integral, but 
over k and w ,  and after a sufficiently long time, the main contribution to the 
integral considered in the form If(k) exp {ih(x ,  y ,  k, w )  t }dkdw arises from points 
at which ahlak, = ah/ak, = 0 provided these are distinct. Here, 

h = k,x/t + kZy/t - W ,  

so that the conditions for points of stationary phase are again (7); the contribu- 
tion to the integral is O(t-l). If the points of stationary phase are not distinct, the 
contribution is O(t-5). This form of the argument allows the form of the disturb- 
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ance front which propagates outwards from an initial disturbance to be derived. 
In  $4, in which we consider the Cauchy-Poisson problem for internal waves, the 
analysis reveals the properties of steady-state waves without recourse to argu- 
ments of stationary phase. For a much fuller discussion of group velocity and 
methods of stationary phase, the reader is referred to Lighthill (1965). 

For the remainder of this section we shall consider the phase properties of 
short steady-state waves using group velocity concepts; see also Eckart ( 1960). 
For short waves, the dispersion relation reduces to w = wokl(& + ki)-a and the 
group velocity is c,  = woE2(k?+ k?j)-+ (k2 ,  - kJ, so that cg is perpendicular to k, 
that is, the waves possess the property of propagating outwards along their 
crests. This follows since the phase velocity of a wave is wk/ I kl so that crests and 
troughs appear to travel in the direction of k, that is they are themselves per- 
pendicular to k. But waves can manifest themselves only in the direction in 
which energy is propagated, that is in the direction of c, which is parallel to the 
crests and troughs. Further, we see that associated with a given frequency w ,  
which must be less than the Vgisala-Brunt frequency wo, there is a unique direc- 
tion of the wave-number vector k, the angle 8 to the vertical. There is therefore 
a unique direction of c,, the angle 8 to the horizontal. Since we are here concerned 
with point disturbances in the (x, y)-plane, we arrive at the conclusion that 
steady-state waves from a point disturbance of frequency w will be observed as 
a cross with its branches at the angle sin-I (w/w,) to the horizontal. If w << wo, the 
crests will be almost horizontal; if w = wo, the crests will be vertical; if w > wo, no 
small amplitude waves are permissible. 

A deduction from this result is that, in a practical situation in which a disturb- 
ance has associated with it a fixed frequency, but is not ideally sinusoidal, one 
would expect some energy to be vested in the harmonics. However, only har- 
monics whose frequency is less than w,, will appear. A further deduction is that 
the velocity disturbances are everywhere perpendicular to k, that is the waves 
are transverse waves. Hence, the velocity disturbances in a strictly two- 
dimensional situation are parallel to c, so that particles are constrained to 
oscillate along the group velocity vector and there is a non-zero velocity parallel 
to the wave crests. Direct observation of the path of a particle engaged in this 
wave motion would suggest that the wave was purely longitudinal, which is 
completely mistaken. 

Another prediction is that of the possibility of the trapping of waves by allow- 
ing the medium to be suitably inhomogeneous so that wois not constant. Consider, 
for example, waves generated by a small disturbance of frequency w operating in 
a region of constant wo and starting at time t = 0. The resulting waves would be 
seen to propagate outwards with their crests along the direction 8 to the hori- 
zontal; in practice, the waves to  be expected from the discontinuity of the starting 
process are weak. For practical purposes, the emergence of a strong wave from 
the inner region surrounding the oscillating bar marks the beginning of the 
‘steady-state ’ regime. If, however, after some distance the wave encounters a 
region of slowly varying wo, then since w is fixed along the ray, the direction of the 
ray, 8 to the horizontal, must change to compensate. If we introduce a phase 
function $ with the properties that w = - a$lat and k = V$, then differentiating 
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the dispersion relation w = f(k, r) with respect to a space co-ordinate and re- 
interpreting the derivatives, we obtain successively 

and 

since w is independent of x. This shows that k, is unchanged along the ray, but 
that h, changes according to the rate at which the ray ascends or descends. Thus, 
0 changes. For example, if wo increases then the crests are bent away from the 
vertical and if wo increases sufficiently the crests will ultimately propagate 
horizontally. If wo decreases, the wave-crests are bent towards the vertical, and 
if wo decreases to w ,  they will become vertical. If wo continues to decrease then 
small amplitude progressive waves are forbidden, so that waves may not propa- 
gate beyond the region in which wo = w ;  the waves have been trapped. We shall 
discuss this in more detail when we consider the experimental results. 

k ,  

FIGURE 1. The curve w as a function of k. 

3. Steady-state waves of arbitrary wavelength 
Let us now consider the case of arbitrary wavelength; although there is little 

energy vested in long waves in many internal wave systems, it is, nevertheless, 
important to know how the short wavelength results are to be modified. The 
curve of constant frequency, see (5) above, is a hyperbola in the k-plane and is 
shown in figure 1. The k,-intercept A is w(wf/Zg) (wf - d)-+ and we can see that 
the asymptotes are the lines kJk, = ~t: tan 8. Moreover, there is a maximum 
wavelength A,,, = 2n/A. The permissible directions for group velocity are the 
normals to the curve w = constant, and we can readily see that these lie in a fan 
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between the horizontal and the directions & 0 to  the horizontal; see figure 2. Of 
course, whether or not a disturbance is ever observed in a particular direction 
depends on what fraction of the total energy is associated with the particular k 
to which the direction corresponds. 

We have pointed out that ordinary group velocity arguments are applicable 
only when points of stationary phase are simple. The condition for double 
stationary points (8) requires 

{k: + ki + (w;/2g)')(ki(k2, + @ + (4/2g),) - 3 k ; ( ~ ; / 2 g ) ~ )  = 0, (9) 

which yields a relation between k, and E, .  Coupled with the relation for stationary 
phase, this gives the form of the disturbance front in the Cauchy-Poisson prob- 
lem which we shall consider in the next section. However, if we insist that the 

I 

\ 
\ \ 

FIGURE 2. The directions of the group velocity vectors for waves of any wavelength. 

waves are short, that is (0; /2g) ,  < k?+k; ,  equation (9) requires k2 = 0,  with k, 
arbitrary. Such waves have their crests vertical and have zero group velocity. 
For short waves generated with frequency w which is less than w,,, this implies 
that there are no double stationary points. We shall consider the implications 
for waves generated in a medium inhomogeneous in wo when we discuss the 
experimental results. 

4. The Cauchy-Poisson problem 

F = (Fz, I?!) is easily shown to be 
The equation for the disturbance stream function $ in the presence of a force 
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If we put $ = Y exp (w;y/Zg),  then Y satisfies the equation 
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where po = poo exp ( - w; y /g ) .  If .Fz and .Fv are proportional to 6(x) 6 ( y )  8( t ) ,  where 
6 denotes the Dirac delta function, we may express Y? as a linear combination of 

wt)& dk,dk2dw 
i w  exp {i(klx + k 2  y -  

-a w2( k2, + k;) - w; k! + ( w $ 2 g )  w 
I = /  

and its first derivatives with respect to x and y .  Putting w = awe, we have 

iaexp{i(k,x+k~y-aoot)} 
dk, dk,  da. 

--m @(a2- 1 )  + a2(kt + (w;/2g)2) 
I = /  

We may effect the integration with respect to k, by considering 

S, exp (izx){z2(a2 - 1)  + B2)-1dz 

round the large semi-circle C in the upper half plane; a and B are real. The poles 
of the integrand are simple and lie at the points & B( 1 - a2)-*. If a < 1, these lie 
on the real axis; the contour must be indented in an asymmetric fashion to ensure 
that the waves are outgoing. If a > 1, the poles are purely imaginary with only 
one inside the contour. For a < 1 

where we shall consider x > 0. Now consider the integral 

exp (i(r(t2 + 1)8 cosh 6' +rt sinh 6')) 
at. 

- W  ( t 2  + 1)s 
If we let t = sinh q5, then 

m 

Gl(r ,  0) = 1 exp (ir cosh (q5 + 0)}d$ 
-m 

which is obviously independent of 0, so that in particular 

exp { - r(t2+ 1): cos 0 +  irt sin 0} 
at. 

--m (t2 + 1)* Consider G2(r7 = / 
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If we put t = sinh 8 as before, we may likewise show that 

Thus, we may write 
G2(r,  8)  = G2(r7 0)  = 7rriHdl) (ir). 

9 

where the positive root of the argument of Hdl) is to be taken. Now, 

(d/dz)Rdl)(z) = - H$')(z), 

so that the integral over a which represents Y has an integrand of the form 

where C and D are non-oscillatory functions of x,  y and a. 
We note that the steady-state problem has this integrand itself as the repre- 

sentation of Y and that it changes its character as the argument of the Bessel 
functions change from a real to an imaginary quantity; this occurs at 

xzay 1 - a y  = y2. 

This is the line 01 = sin 8, or w = wo sin 8 where y / x  = tan 8. 

functions is given by 
To return to the Cauchy-Poisson problem: the asymptotic form of the Bessel 

H$l)(z) N ( 2 / 7 r z ) ~ e x p { i ( ~ - ~ i ~ 7 ~ - ~ 7 r ) ~ ~ ~ ( ~ + v ,  t - v ;  1/2iz). 

Thus, Y is proportional to 

where t is to be the large parameter and the function f is non-oscillatory. The 
points of stationary phase are 

that is 

where 6 = (w0 /2g) (x / t )  and 7 = (w0/2g)(y / t ) .  Crests and troughs are the loci of 
points of constant phase 

where /3 is a parameter such that one moves from crest to crest by changing P by 
27r/00. The locus of double stationary points gives the form of the disturbance 
front; this has the parametric equation 

f ;  = (1 - a2)# (1 + 3a2)-it7 

7 = 1 / 3 0 1 ~ ( 1 - ~ ~ ~ ) ( 1 + 3 a ~ ) - ~  (0 < cc < l), 
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and is shown in figure 3 as a dashed curve. A crest or trough is given by the 
parametric relation ( = a-qa+p/t)ql-a2), 

7 = (a+P/t)&( -p/ t -a3p,  

where aP < 0 and lP/tl < 1.1 < IP/tl* < 1, for fixed p. In  figure 3, the full curves 
are curves of constant phase for given values of pit. We see that there are two 
families of waves which we call the oblique and transverse waves by analogy with 
the Kelvin ship-wave pattern. The intersection of a particular curve with the 

0 2  - 
7 

0.1 - 
: * . . 0 

8 
I -.- 

I I I I I I I I I 
01 0.2 03 0.4 0.5 06 0.7 08 0.9 1.0 

5 
FIGURE 3. The wave envelope and curves of constant Pit. 

envelope is a cusp and corresponds to 4a3 + 3(p/t) a2 +P/t = 0. Sinceneighbouring 
crests have values of P which differ by 2n/w,, these full curves do not correspond 
to crests at all instants of time. Since lP/tl < 1, the number of crests increases 
linearly with time, and in such a way that an observer moving with constant 
velocity always observes waves of fixed wavelength. This follows from the fact 
that, having specified the group velocity components, the wavelength is deter- 
mined. On figure 3, the observer would be positioned a t  a fixed point. Crests 
would move in such a manner that the oblique waves would move towards the 
E-axis, new waves being created in the upper left hand part of the lobe. The result 
would be an increasing number of full curves in the lobe, more and more closely 
spaced as time progressed, the spacing decreasing a t  precisely the rate required 
to preserve constant wavelength a t  a point in the diagram, compensating for a 
scale of distance which shrinks with time. We have chosen four arbitrary values 
of @/t for the sake of illustration. 

Let us now return to the case of short steady-state waves. We describe the 
experimental arrangements and show that the waves observed are indeed short. 

5. The experimental investigations 
These were carried out in a glass-walled rectangular tank, 50cm square by 

100 cm deep, containing a salt solution with density increasing linearly from top 
to bottom. The methods used for obtaining such a density stratified medium 
have been discussed in detail by Mowbray (1966), in which paper the Toepler- 
schlieren technique used in the experiments is also described. The distance 
characteristic of appreciable density variations, (p-ldp/dy)-l, was typically 
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500 cm. The disturbance had a typical diameter of about 2 cm, producing waves 
of similar wavelength, so that the observed waves were indeed short. 

The waves were observed by a schlieren technique which is sensitive to varia- 
tions in refractive index; there is assumed to be a one to one correspondence 
between refractive index and density. It is important to note that a schlieren 

FIGURE 4. A sketch of the apparatus. 

system is usually employed to detect departures from a uniform distribution of 
refractive index, corresponding to the undisturbed state of the medium. Here, 
the undisturbed state has itself a variation of refractive index, and the schlieren 
system must be set up to accommodate this before measurements are taken. As 
the emergent light beam from the undisturbed medium must consist of parallel 
rays, the density gradient in the tank must be constant so that the incident 
parallel beam remains parallel after its passage through the medium; see Mow- 
bray (1966). This implies that wo is of the form (b  + cy)-4 which is not constant, so 
that the medium is not homogeneous with respect to oo. However, the departures 
from homogeneity are small and result in the slight bending of an otherwise 
straight crest. As far as the phase properties of the wave system are concerned, 
this small inhomogeneity is unimportant, and is actually useful in that it allows 
one to correlate the bending of the crest and the change in oo. 

At time t = 0, the waves were generated by the forced oscillations of a bar of 
about 2 cm diameter, supported horizontally midway in the tank by thin struts of 
elliptic section hinged at their upper end (see figure a), with a frequency which was 
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a fraction of the Vaisala-Brunt frequency wo; a typical value of wo is 0.5 sec-1 
and this represents the maximum permissible frequency. 

Plate 1 (1) shows the image of the fluid in the absence of waves; as in all the 
following plates, the knife-edge is vertical. The horizontal band arises as a result 
of a phenomenon which is peculiar to anisotropic fluids. To discuss it we must 
digress briefly. 

A particle in a stratified fluid of infinite extent in which a horizontal cylinder 
of radius a moves in a horizontal direction is acted on by the pressure field of the 
cylinder and the vertical restoring force due to its own buoyancy. Let us measure 
the displacement y* from the horizontal plane through the centre of the cylinder 
and let x* be the distance from the centre of the cylinder in the horizontal direc- 
tion. If  the cylinder is moving sufficiently slowly, we can find a p < 1 for which a 
particle, originating in the layer y* = pa, has exactly balancing vertical pressure 
gradient and buoyancy force at that station in its path a t  which y* = a; particles 
from layers y* < pa have balancing pressure gradient and buoyancy forces at 
y* < a. Since the pressure gradient decreases with increasing x*, say, p* will not 
be uniform in x*, but will be uniform in time. This implies that all particles 
originating in layers y* < pa can never flow past the cylinder. The medium is 
incompressible so that, to satisfy the continuity equation, the cylinder must push 
ahead and drag behind a slab of fluid, stationary with respect to itself in the 
steady case, which has a width equal to its own diameter. Note that this pheno- 
menon exists in an inviscid fluid. The far field can be considered to be a waye of 
zero frequency, that is k,  = 0 with k,  arbitrary. The group velocity has compon- 
ents (wo/k,, 0) and is wholly in the horizontal direction and is finite; likewise ths 
particle velocity (a@/ay, - a@/ax) is wholly in the horizontal direction. That is, 
there is a horizontal column being pushed ahead of and dragged behind the 
cylinder. The phase velocity is zero, since it is proportional to frequency. The 
wavelength is 2nU/wo for the crests to be stationary with respect to the cylinder, 
so that the rate at which the head of the column advances, that is the group 
velocity, is the velocity of the cylinder. The authors understand that Dr Brether- 
ton has made a detailed study of this problem. 

In a bounded medium, a more complicated but similar phenomenon occurs; 
pis no longer uniform in time. Those particles, which in the fluid of infinite extent 
are pushed ahead, say, are unable to move unhindered in the x*-direction; the 
slab is ‘squeezed’ between the cylinder and the bounding wall, and thickens. 
Fluid ‘spills’ over the cylinder, driven by its own buoyancy force which is en- 
hanced because of the corresponding reduction in t,hickness of the layer dragged 
behind the cylinder, ‘stretched’ between the cylinder and the wall. One would 
expect some viscous mixing to take place near the top and bottom edges of the 
slab, creating a thin layer of more or less constant density, which appears as a 
discontinuity of contrast in the schlieren photograph. Some considerable time 
must elapse before this non-uniformity of density gradient disappears under the 
action of diffusion. The horizontal band in plate 1 (l),  is therefore a legacy from 
previous runs, and its effect is confined to its immediate neighbourhood. 

The tank is filled from the bottom by running in layers of successively greater 
density, and, despite efforts made to keep the tank clean, the water used in the 
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experiments contained a small amount of very fine ‘silt ’ which gradually settled; 
fluid directly under the bar is shielded by the bar and contains less silt than the 
surrounding fluid, so that it appears as a light region on the photograph. This 
phenomenon has no effect on the wave system. 

Plate 1 ( 2 ) ,  shows waves corresponding to w = 0.318w0. We see that they 
are close to the horizontal, and, as we would expect, appear both above and 
below the horizontal line through the initial disturbance. Note that there are no 
disturbances visible elsewhere in the field of view. First harmonics are present 
but do not contain enough energy to manifest themselves. 

X 

FIGURE 5 .  A diagram of successive wave crest positions. 

Plate 1, figure 3, shows waves at w = 0 . 3 6 6 ~ ~ .  Examination of the wave 
motion, and of cinB film of the wave motion, shows quite clearly that waves do 
propagate along their crests and troughs and that their phase and group velocities 
are perpendicular. The disturbances are, as one would expect, not ideally thin 
lines, so that a wave crest appears to be created at the line aa’ (see figure 5 )  and 
moves across to the line bb‘ and is then annihilated, the crest simultaneously 
lengthening. It is important to note that since w = wok,(k2, + lei)-* waves of all 
wavelengths are possible for a given frequency w ,  provided, of course, that they 
are all sufficiently short for this expression to be valid. The wavelength which is 
observed depends entirely on the nature of the oscillating disturbance. 

Also in plate 1, figure 3, we see that the waves have been reflected at the side 
walls of the tank. Since a wave preserves its frequency, and since there is a one 
to one correspondence between frequency and inclination we see that the crest of 
the reflected wave must make the same angle with the horizontal as the incident 
wave. This is observed. However, we also have the condition that the component 
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of wave-number parallel to the wall is conserved. If the incident and reflected 
waves make an angle 0 with the horizontal and if the rigid wall makes an angle $ 
with the horizontal, it  is easily shown that 

or 
lkil sin($-0) = IkJ sin($+0), 

hi1 sin ($ - 0) = A; sin ($ + 0)) 

where the suffices i and r refer to properties of the incident and reflected waves 
respectively. For a vertical wall, there is no change in the wavelength. 

We also detect in plate 1 (3), fainter waves at  Iarger angles to the horizontal, 
that is corresponding to a higher frequency. These waves correspond exactly 
to the first harmonics. We note that however closely these wave systems actually 
lie in space, they are essentially distinct. In  no meaningful sense do waves proceed 
from one train to the other; their frequencies are different, their phase velocities 
are different and in general their wavelengths are different. 

Plate 1(4), shows waves corresponding to w = 0 . 4 1 9 ~ ~ .  The waves corres- 
ponding to the first harmonic are now approaching the vertical. In  plate 1 ( 5 ) )  
w = 0.615w0, so that the first harmonic is forbidden. This is clearly demonstrated. 

In  plate 1 (6))  w = 0.699w0, and the angle is now sufficiently high for the 
small effects of inhomogeneity to be observed. As a result of having a linear rather 
than an exponential density distribution, wo increases by about 5 %  from its 
mean value in the upwards direction and decreases by about the same amount 
downwards. We would therefore expect the crests to be bent away from the 
vertical in the upper half plane and towards it in the lower half plane. This is 
shown in this plate and more markedly in plate 3 (7). 

In  plate 2 (7)) which corresponds to w = 0.900wo, we see waves reflected from 
the upper and lower parts of the medium. In particular, this is not a simple 
reflexion from the free surface, but rather a trapping of the waves by the top 
layer of fluid. This arises as a result of the variation of density gradient near the 
free surface. There is an overall diffusion condition dpldy = 0 a t  the free surface, 
so that although wo rises slowly with increasing height from its mean value, by 
virtue of decreasing density, it decreases quite rapidly to zero in the uppermost 
layer of fluid. We have seen that double stationary points for short waves cor- 
respond to k, = 0 or w = wo, and that they do not exist for waves of frequency w 
less than wo generated in a medium homogeneous in wo. However, if wo changes 
and decreases below the value of w pertaining to a particular wave train, on the 
curve in space along which wo = w only double stationary points may exist. This 
curve, in the present case a horizontal line, presents a natural barrier to the wave 
train. Further, the ray theory suggests that the crests of the waves generated in 
a region of constant wo greater than w ,  will be bent as they enter a region of vary- 
ing wo. If wo decreases, they are bent towards the vertical and if wo decreases to 
w, they become vertical and have zero group velocity. The horizontal line along 
which wo = w is therefore an envelope of cusps of the rays beyond which no small 
amplitude waves may propagate; the rays are reflected and describe a path which 
is the image of their incident path in the vertical axis through the cusp. In  the 
neighbourhood of this trapping and reflexion the simple ‘geometrical optics ’ 
approach of ray theory breaks down. 
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Precise:ly the same phenomenon occurs a t  a solid bottom where dpldy must 
also be zero, or at a sufficiently great depth in a fluid of constant density gradient, 
by virtue of increasing density. The first two effects can be seen in plate 2 (7). 

Plate 2 (S), shows conditions for w = 1 . 1 1 ~ ~ ;  no wave-like disturbances are 
observed in the steady state, disturbances being confined to a mixing region 
close to the cylinder. It will be observed in plates 1 and 2 (2-7), that the dis- 
turbances have a finite width of about one wavelength; this is close to the 
diameter of the bar. 
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FIGURE 6. A graph of sin 0 against w/wo and 2w/wo. x corresponds to  w,, = 13.25 c/min; 
amplitude = 0.4 in. 0 corresponds to w,, = 13.25 c/min; amplitude = 0.2 in. ;A corres- 
ponds to  wo = 14.1 c/min; amplitude = 0.15 in. + corresponds to first harmonics of 
points marked x . 0 corresponds to f3st harmonics of points marked 0. 

The measurements taken from photographs of which plates 1 and 2 (1-S), 
are a small selection are summarized in figure 6. For fundamental frequencies sin8 
is plotted against w/oo and for first harmonics, sine is plotted against 2w/wo. 
The Vaisala-Brunt frequency is taken to be constant and equal to  its value at 
the mean level. The observed values fall below the line a t  the larger angles, 
where the effect of small inhomogeneity in w,, is noticeable. For these, the dis- 
crepancy, using the local value of wo, is less than 5 %. 

Let us now compare the results of $4 with the schlieren photograph 
(plate 2 (9)) of the wave pattern produced by an impulsive disturbance. In  this 
plate, the disturbing mechanism consisted of a flat strip 2 em wide mounted 
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horizontally with its sides vertical between struts of similar material. The strip 
was moved abruptly sideways through a distance of 1.5 cm and returned to its 
original position. Observation establishes that the number of crests does increase 
with time. The crests on plate 2 (9), appear not to emanate from the origin; 
this is due to distortion in the neighbourhood of the initial disturbance. The field 
of view corresponds to a small region near the origin in figure 3. The strip has 
excited the oblique waves; the cusps and transverse waves have not been detected. 

We know from the work of Burnside (1888) and Havelock (1908) that the effect 
of the finite size of a disturbance is to reduce exponentially the amplitude of 
waves long compared with the disturbance, and to modulate more or less rapidly 
the amplitude of waves of wavelength comparable with the typical dimension 
of the disturbance, in the fashion of beats. This latter effect implies that near the 
disturbance, the crest and trough pattern may well appear to deviate from that 
produced by a point disturbance; group velocity, we recall, increases mono- 
tonically with wavelength. Further, one feels sure that short waves will be sub- 
jected to non-linear effects which will also change the pattern from that expected 
of the linear system from a point disturbance. Moreover, we would expect this 
non-linear region to expand uniformly in time, since the group velocity of waves 
of given wavelength is constant, the region being the circle or sphere marking the 
locus of those waves whose wavelength is the greatest to be affected by non- 
linearities for a given disturbance. We do not feel that we can say more than that 
the outer portion of the distorted region is due to the (linear) ‘beats’ phenomenon, 
but that it is not possible to determine whether any non-linear interactions have 
produced noticeable effects in the inner part of the distorted region. 

6. Conclusion 

internal waves in a stratified fluid have been tested and confirmed. 
The predictions of the small amplitude theory of the phase configurations of 

The authors wish to thank Professor N. H. Johannesen for his invaluable 
advice and Professor I?. J. Ursell for many discussions which contributed greatly 
to the authors’ understanding of wave phenomena. One of us (D. E.M.) was in 
receipt of a maintenance grant from the S.R.C. 

Acknowledgement is also made to the Ministry of Aviation who supported this 
work. 

BURNSIDE, W. 1888 Proc. Lo&. Math. SOC. 20, 22. 
ECKART, C. H. 1960 Hydrodynamics of Oceam and Atmospheres. Oxford: Pergamon. 
GORTLER, H. 1943 2. angew. Math. Mech. 23, 65. 
HAVELOCK, T. H. 1908 Proc. Roy. SOC. A 81, 406. 
JONES, D. S. & KLINE, M. 1958 J .  Math. Phys. 37, 1. 
LAMB, H. 1932 Hydrodynamics. Art 235. Cambridge University Press. 
LIGHTHILL, M. J. 1965 J .  Inst. Maths. Applics 1, 1. 
MOWBRAY, D. E. 1966 J .  Fluid Mech. 27, 595. 
WHITHAM, G. B. 1960 J .  Fluid Mech. 9, 347. 
YIH, C-S. 1965 Dynamics of Non-homogeneous Fluids, Chapter 2. New York: Macmillan. 

R E F E R E N C E S  



Journctl of Fl/iiil Jlcc7/nnics, V o l .  18. pccrf 1 Plate 1 






